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Abstract: Air pollution presents a serious hazard to human health and the environment
for the global rise in industrialization and urbanization. While fine-grained monitoring is
crucial for understanding the formation and control of air pollution and their effects on
human health, existing macro-regional level or ground-level methods make air pollution in-
ference in the same spatial scale and fail to address the spatiotemporal correlations between
cross-grained air pollution distribution. In this paper, we propose a 3D spatiotemporal
attention super-resolution model (AirSTFM) for fine-grained air pollution inference at a
large-scale region level. Firstly, we design a 3D-patch-wise self-attention convolutional
module to extract the spatiotemporal features of air pollution, which aggregates both
spatial and temporal information of coarse-grained air pollution and employs a sliding
window to add spatial local features. Then, we propose a bidirectional optical flow feed-
forward layer to extract the short-term air pollution diffusion characteristics, which can
learn the temporal correlation contaminant diffusion between closeness time intervals.
Finally, we construct a spatiotemporal super-resolution upsampling pretext task to model
the higher-level dispersion features mapping between the coarse-grained and fined-grained
air pollution distribution. The proposed method is tested on the PM2.5 pollution datatset of
the Yangtze River Delta region. Our model outperforms the second best model in RMSE,
MAE, and MAPE by 2.6%, 3.05%, and 6.36% in the 100% division, and our model also
outperforms the second best model in RMSE, MAE, and MAPE by 3.86%, 3.76%, and
12.18% in the 40% division, which demonstrates the applicability of our model for different
data sizes. Furthermore, the comprehensive experiment results show that our proposed
AirSTFM outperforms the state-of-the-art models.

Keywords: fine-grained air pollution inference; spatial–temporal features; self-attention;
super-resolution

1. Introduction
Air pollution presents a serious hazard to human health and the environment for

the global rise in industrialization and urbanization. The World Health Organization
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(WHO) [1] estimates that nearly all of the world’s population (99%) breathes air that is
unhealthy and exceeds WHO air quality standards. Every year, 7 million premature deaths
are attributed to the effects of household and ambient air pollution combined [2]. Air
pollution usually shows regional characteristics, on the one hand due to inter-regional
pollutant interactions caused by atmospheric circulation, and on the other hand due to a
long history of irrational industrial layout in urban areas and focus on rough economic
development. In particular, China has experienced increasing levels of PM2.5 pollution
in recent decades caused by rapid urbanization and industrialization [3,4]. Fine-grained
PM2.5 monitoring is crucial for understanding the formation and control of air pollution
and their effects on human health. Furthermore, the “Chinese Government Work Report
2022” states that regional collaborative management monitoring for air pollution needs
to be strengthened, and fine-grained pollutant monitoring is needed for proper urban
management and air pollution source control [5].

The current research of air pollution inference mainly focuses on two scales: the macro
national or regional level and micro city ground-level. For the macro national or regional
level air pollution inference, satellite remote sensing techniques have been frequently used
to estimate spatially continuous near-surface pollution concentrations for their capacity
to track regional pollutant distributions [6–9]. Due to the limited data grained and the
geographical proximity assumption, it is easy to introduce cumulative errors in statistical
regression models and produce poor estimation results at the fine-grained level. For the
micro city ground-level air pollution inference, monitoring air pollution with fine spatial
granularity requires numerous devices to cover the target area, which brings a high cost
of installation and maintenance [10–13]. The majority of the ground-level air pollution
monitoring stations are distributed in urban centers and around industrial areas, and less
in suburban and rural areas. This quantity distribution of air pollution monitoring stations
is incredibly unbalanced, making it hard to obtain the unbiased estimation of air pollution
at a large-scale region level.

In recent years, deep learning has made great progress in the super-resolution inference
problem, which has motivated many applications in other fields, such as meteorology [14],
climate [15], urban hotspots events prediction [16–19], and urban flow computing [11]. The
video super-resolution model can solve the fine-grained air pollution inference problem to
a certain extent, but they ignore the diffusion characteristics of air pollution [20]. Moreover,
the correlation between frames in the video super-resolution problem is very high leading to
feature redundancy, but there is no such problem in fine-grained air pollution inference [21].

Although much progress has been made by these methods, the existing macro-regional
level or ground-level methods make air pollution inference by conducting interpolations
from partial observations in the same spatial scale and fail to address the spatiotemporal
correlations between cross-grained air pollution distribution. Furthermore, they still have
limitations and there remain gaps when dealing with the issue of fine-grained air pollution
inference (FAPI) at a large-scale region level, which can be embodied as follows:

(1) At the large-scale region level, the spatial and temporal distribution of pollutants in a
region can be interpreted as one industrial area source in coarse-grained view. While
in fine-grained view, it can be regarded as multiple plants emission forming multiple
sources, indicating the pollutant dispersion heterogeneity in spatial and temporal
distribution [22]. Furthermore, both coarse-grained and fine-grained distribution have
strong local correlation due to pollution sources, wind direction, and topography [23].
Furthermore, the spatial local correlation between the distribution of coarse-grained
and fine-grained pollution can vary significantly, whereas the spatial local correlation
of coarse-grained pollution may decrease as a result of the more uniform distribution
of pollution sources over a larger area. Due to the spatiotemporal variety distribution
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and spatial local correlation of pollutant dispersion processes at different scales, it is
more challenging to make fine-grained inferences about atmospheric pollutants.

(2) Atmospheric pollutants have a time-varying diffusion effect,and in the case of long
time intervals (e.g., 1 day), pollutants are likely to experience significant changes,
which makes it challenging to accurately infer the trend of pollutant diffusion and ex-
tract the characteristics of the short-term diffusion trend from the temporal distribution
of atmospheric pollution [24,25].

(3) Pollutants emitted from one region can have long-lasting impacts on another region
due to atmospheric diffusion and transport at a large scale [26]. Furthermore, due to
the atmospheric circulation and various other factors, pollutants move through the at-
mosphere at a relatively slow rate of diffusion and deposition. Additionally, during the
deposition process, pollutants can undergo transformations into different chemical
species, leading to the persistence of certain pollutants in the environment [27]. Wind
speeds and other meteorological conditions can facilitate the long-distance transport
of atmospheric pollutants, allowing them to affect regions that are far removed from
their original sources. Furthermore, it is essential to consider the long-term trends of
pollutants over time when assessing their environmental impact.

Therefore, this study aims to propose a fine-grained air pollution inference framework
to realize high-resolution air pollution estimation at large-scale region level. We convert
the fine-grained air pollution inference as a single image super-resolution problem, and we
propose a spatiotemporal super-resolution data-driven method to enhance the pollution
map granularity. The proposed framework creates a mapping from the coarse-grained air
pollutant regional distribution to get the fine-grained distribution, and the distribution
of PM2.5 pollutants in the Yangtze River Delta region on 31 December 2021 is shown in
Figure 1 (the dataset details are shown in Table 1), where the coarse-grained pollutant
distribution (8 km × 8 km) is shown on the left and the fine-grained pollutant distribution
(1 km × 1 km) is shown on the right.

Figure 1. The distribution of PM2.5 pollutants in the Yangtze River Delta region on 31 December 2021;
(a) shows the coarse-grained distribution (8 km × 8 km) and (b) shows the fine-grained distribution
(1 km × 1 km), where black represents the map boundary, which we set to -inf [28].

In this paper, a fine-grained air pollution inference model (AirSTFM) is proposed at
the large-scale region level. The main contributions of this paper are as follows:

(1) A 3D-patch-wise self-attention convolutional module is designed to extract the spa-
tiotemporal features of air pollution, which aggregates both spatial and temporal
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information of coarse-grained air pollution and employs a sliding window to add
spatial local features.

(2) A bidirectional optical flow feed-forward layer is designed to extract the short-term
air pollution diffusion characteristics, which can learn the temporal correlation con-
taminant diffusion between closeness time intervals.

(3) A spatiotemporal super-resolution upsampling pretext task is constructed to model
the long-term higher-level dispersion features mapping between the coarse-grained
and fined-grained air pollution distribution.

(4) Comprehensive experiments are performed on the PM2.5 pollution datatset of the
Yangtze River Delta region, and the experiment results show that our proposed
AirSTFM outperforms the state-of-the-art models.

Table 1. Details of dataset.

Dataset

Air pollutant PM2.5

Time span 1 January 2013–31 December 2021

Time interval 1day

Coarse-grained size 100 × 90

Coarse-grained scale 8 km

Fine-grained size 800 × 720

Fine-grained scale 1 km

Upscaling factor 8

Latitude range 29◦20′N–32◦34′N

Longitude range 115◦46′E–123◦25′E

The rest of this paper is arranged as follows. In Section 2, we present the related
work of the macro and micro air pollution inference model. We clarify the fine-grained
air pollution inference problem and relevant definitions in Section 4. In Section 5, we
present the detail components of the proposed AirSTFM model. The experiments and
result analysis are presented in Section 6. Finally, we conclude the paper and discuss the
future possible extending work in Section 7.

2. Related Work
2.1. Macro National/Regional Level Air Pollution Inference

For the macro national or regional level air pollution inference, satellite remote sens-
ing techniques have been frequently used to estimate spatially continuous near-surface
pollution concentrations for their capacity to track regional pollutant distributions. For in-
stance, aerosol optical depth (AOD) is produced by a number of satellite sources, including
Himawari-8 [6], the Visible Infrared Imaging Radiometer (VIIRS) [7], and Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) [8]. The currently popular AOD products have a
poor spatial resolution (between 3 and 10 km), and they exhibit significant estimation un-
certainty on bright surfaces [9]. Additionally, the spatial and temporal distribution of PM2.5

is incredibly complex since it is influenced by both natural and human influences. Further-
more, Jiang et al. [29] investigated the temporal and spatial aspects of air quality in China’s
Yellow River Basin economic zone. Yuan et al. [30] evaluated the features of air pollution
changes in the Yangtze River Delta region during the COVID-19 outbreak. Furthermore,
to analyze the air pollution of China’s urban cluster regions, Deng et al. [31] assessed the
geographical and temporal variability of PM2.5 and the surface ozone. He et al. [32] used
an enhanced gradient boosting decision tree to predict the regional distribution of PM2.5

in China. Chen et al. [33] estimated the spatiotemporal distribution of PM10 pollution in
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China using a random forest model. Wu et al. [34] integrated Kriging and inverse distance
weighting (IDW) to realize adaptive interpolation of coarse-grained pollution maps. Blan-
chard et al. [35] interpolated spatiotemporally with weights calculated from inter-station
pollutant correlations to generate daily air pollution concentration distributions at the 1–10
km scale. Wei et al. [36,37] suggested a tree-based ensemble spatial–temporal extra-tree
(STET) model to generate high-quality, high-resolution PM2.5 distributions for China from
2000 to 2020. Babaan et al. [38] used an ensemble hybrid spatial model to estimate ozone
pollution in the Taiwan Province area. Yang et al. [39] proposed attention-based domain
spatiotemporal meta-learning (ADST-ML) to adaptively extract the spatiotemporal depen-
dence of PM2.5 for a regional PM2.5 prediction in Beijing. However, due to the limited
data grained and the geographical proximity assumption, it is easy to introduce cumu-
lative errors in statistical regression models and produce poor estimation results at the
fine-grained level.

2.2. Micro City Ground-Level Air Pollution Inference

For the micro city ground-level air pollution inference, monitoring air pollution with
fine spatial granularity requires numerous devices to cover the target area, which brings a
high cost of installation and maintenance. In recent years, mobile sensor networks have
been applied to obtain fine-grained sensing with fewer sensors. These sensors can be
carried and powered by vehicles, e.g., taxi, tram, or bus, so that they can move around the
city to sense the air quality at different locations [10,11]. Do et al. [12] used graph neural
networks to infer fine-grained pollution distributions. Dun et al. [13] proposed a novel
deep learning model by combining dynamic graph convolutional and multichannel spa-
tiotemporal convolutional networks (DGC-MTCNs) for air quality prediction. Liu et al. [40]
proposed spatial–temporal causal convolutional networks to make precise projections of the
AQI in Shanghai, where spatial effects of several sources of air pollution and meteorological
conditions were taken into account. Ma et al. [41] estimated the fine-grained distribution of
PM2.5 using a random forest method. Xu et al. [42] employed spatiotemporal graph con-
volutional networks to make road-level emission predictions. Zhang et al. [43] developed
a hybrid deep learning framework that enables fine-grained air pollution estimation at
the city-level. Hu et al. [44] recently combined feature recovery, feature extraction, and air
quality inference into one model to infer the fine-grained distribution of air quality in
Beijing. Hofman et al. [45] recently adopted bicycle mobile source sensors as a data source
using a variational auto-encoder (AVGAE) and geographic random forest model (GRF)
to increase the geographical monitoring resolution. Marjovi et al. [46] proposed three
modeling approaches using large-scale mobile sensor networks to handle the dynamic
coverage of mobile sensor networks to generate high spatial and temporal resolution maps
of urban environmental pollutants. However, the majority of the ground-level air pollution
monitoring stations are distributed in urban centers and around industrial areas, and less
in suburban and rural areas. This quantity distribution of air pollution monitoring stations
is incredibly unbalanced, making it hard to obtain the unbiased estimation of air pollution
at a large-scale region level.

3. Study Area
The study area in this work is the Yangtze River Delta region, which is located in

eastern China, comprising the provinces of Anhui, Jiangsu, and Zhejiang together with
the municipality of Shanghai, as shown in Figure 2. Furthermore, it is one of the most
developed and prosperous regions in China. The region is one of China’s key economic
engines, with abundant resources and a unique geographical location. The core cities of the
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Yangtze River Delta include Shanghai, Nanjing, Hefei, and Hangzhou. This region is flat
and characterized by extensive farmland, waterways and urban agglomerations.

The Yangtze River Delta region is influenced by a monsoon climate with four distinct
seasons. Summers are warm and humid, and winters are relatively cold. The Yangtze River
Delta region has well-developed port facilities and many important ports on the Yangtze
River, including the Port of Shanghai, which is one of the largest container ports in the
world. These ports play an important role in regional and global trade and provide solid
support for China’s economic growth.

Figure 2. The map identifies the study area of the Yangtze River Delta region, where the distribution
of PM2.5 is concentrated [47].

4. Preliminary
4.1. Coarse/Fine-Grained Pollution Map

The coarse-grained pollution map indicates the pollution data granularity in the obser-
vation sequence. As shown in Figure 3a, the resolution of the coarse-grained pollution is
5× 5 (2 km in spatial resolution). The fine-grained pollution map is the target data granu-
larity to predict, where the fine-grained resolution is 10× 10 (1 km in spatial resolution) as
shown in Figure 3b. For a target region area where the air pollution map uniformly divides
into H ×W grid maps, Xt ∈ RH×W denotes the pollution contaminants at a certain time t.
Figure 3 shows the coarse-grained and fine-grained pollution maps with an upsampling
factor of r = 2, and the coarse-grained pollution map is obtained by integrating the average
of r2 nearby grid contaminants in a fine-grained pollution map. In our work, the resolution
of the coarse-grained pollution is set to 8 km in spatial resolution with an upsampling
factor of r = 8, which is shown in Figure 1.

Figure 3. The illustration of the coarse-grained and fine-grained pollution map.
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4.2. Problem Formulation

Therefore, the fine-grained air pollution inference problem (FAPI) can be defined as
follows, given upsampling factor r and the coarse-grained spatiotemporal air pollution
map XC =

{
Xc

1, Xc
2, Xc

3 . . . Xc
t
}

,Xc
t ∈ RH×W , to make an inference of the corresponding

fine-grained map XF =
{

XF
1 , XF

2 , XF
3 . . . XF

t
}

, XF
t ∈ RrH×rW .

X̂F = f (XC; θ) = arg max
XF

p(XF|XC) (1)

5. Methodology
In this section, we propose a 3D spatiotemporal attention super-resolution model

(AirSTFM) for fine-grained air pollution inference at a large-scale region level, as shown
in Figure 4. Firstly, the PM2.5 pollution map in the target region at each time interval is
converted into a fined-grained map XF and coarse-grained map XC, respectively. A spa-
tiotemporal super-resolution pretext task is constructed to extract long-term spatiotemporal
dispersion characteristics of more coarse-grained pollution maps. Furthermore, a 3D-
patch-wise self-attention convolutional module is designed to extract the spatiotemporal
features of air pollution, which aggregates both the spatial and temporal information of
coarse-grained air pollution and employs a sliding window to add spatial local features.
Then, a bidirectional optical flow feed-forward layer is used to extract the short-term air
pollution diffusion characteristics, which can learn the temporal correlation contaminant
diffusion between closeness time intervals. Finally, we construct a upsampling reconstruc-
tion module to model the higher-level features mapping between the coarse-grained and
fined-grained air pollution distribution.

Figure 4. The framework of AirSTFM, which contains three modules, a 3D-patch-wise convolutional
self-attention module,bidirectional optical flow-based feed-forward module, and a spatial–temporal
super-resolution inference network, for extracting high-level contaminant semantic information using
a pretext task.
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5.1. Spatiotemporal Super-Resolution Pretext Task

Considering the dispersion of pollutants is often long lasting, but capturing the dis-
persion characteristics of pollutants over long periods of time is often very difficult. Here,
we construct a spatiotemporal super-resolution pretext task to pre-train the inference net-
work. Our aim is to use a mapping that is more coarse-grained in both time and space to
learn higher-level features at both spatial and temporal levels. Specifically, we take the
coarse-grained map XT×H×W

C and continue upsampling to obtain a more coarse-grained

X
T
St
× H

Sh
× W

Sw
MC contaminant distribution map. Then, we can construct a spatiotemporal super-

resolution pretext task to map from X
T
St
× H

Sh
× W

Sw
MC to XT×H×W

C , which can help us explore the
long time pollutant dispersion characteristics.

The super-resolution pretext task is shown in Figure 5. We use multiple 3D convolu-
tional and relu layers to capture spatiotemporal features, which is followed by upsampling
using the same method, and the final loss function is adopted as RMSE. By inferring a more
coarse-grained to coarse-grained mapping, higher-level feature semantic information can
be learned, especially the distribution in time, and we can better extract the spatiotemporal
diffusion characteristics of pollutants.

Lin f =
1
T

T

∑
t=1

∥∥∥XC
t −YENC

(
XMC

t ; θ
)∥∥∥2

(2)

Figure 5. Illustration of super-resolution pretext task.

5.2. 3D-Patch-Wise Self-Attention Convolutional Module

The vision transformer (VIT) [48] model introduces the self-attention mechanism to
the image processing aspect, and the method usually cuts the image into a non-overlapping
patch, which will lose some original spatial structure and local features. In the FAPI task,
texture and details need to be reconstructed, as shown in Figure 6. The VIT model cuts the
images into non-overlapping blocks, and the pollutants have certain spatial characteristics
of diffusion which will inevitably disrupt some spatial structure of the original image,
while our self-attention module overlaps the chunks, which not only retains the spatial
structure, but also increases certain local correlation. If the space is cut directly using the
VIT model, the spatial features of atmospheric pollutant diffusion will be lost, for which
we propose a 3D-patch-wise convolutional self-attention module.

As shown in Figure 7, we put the input air pollutant features X into three independent
convolutional networks to extract spatial information. Furthermore, subsequently, we use
sliding local 3D patches with step stride=1 and T*Wp*Hp patch sizes from the feature maps
for the unfold operation, which can better extract local correlations. Then, we reconstruct
the obtained 3D patch into a one-dimensional feature vector to obtain queries subspace (Q),
key subspace (K), and calculate the similarity matrix using dot product, and aggregated
with value subspace (V) into a feature map. Here, it is important to note that because a
3D patch sliding window is used, the obtained feature map contains the spatiotemporal
diffusion features of the PM2.5 pollutants.
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Q = fun f old(WQ × X)

K = fun f old(WK × X)

V = fun f old(WV × X)

(3)

fattention(X ) = ϕ(X +
h

∑
i=1
W i

o ∗ f f old( fun f old

(
W i

V ∗ X
)

︸ ︷︷ ︸
V

σ1( fun f old

(
W i

K ∗ X
)T

︸ ︷︷ ︸
K

fun f old

(
W i

Q ∗ X
)

︸ ︷︷ ︸
Q

)))

(4)

Finally, as shown in Figure 8, we use the fold operation to reassemble the 3D patch
into a feature map with the same dimensions as the original feature map. The feature
map with the spatial and temporal diffusion characteristics of pollutants can be obtained
by performing the unfold operation on the convolved feature map and then performing
the attention mechanism. Considering the sliding window will overlap, we average the
overlap between the patches.

Figure 6. (a) The VIT divides images into blocks without overlap while pollutants affect spatial
structure. (b) Our self-attention models overlap the chunks, which retains the structure and enhances
local correlation.

Figure 7. Illustration of 3D-patch-wise self-attention convolutional module, where the input FEnc f usion

are fusion features generated by the spatiotemporal super-resolution pretext task. The unfold
operation uses a sliding window to decompose and combine feature maps into patches, and the fold
operation is used to recombine patches into feature maps Fattention.
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Figure 8. Unfolding the convolved spatial–temporal diffusion feature maps.

5.3. Bidirectional Optical Flow-Based Feed-Forward Layer

The conventional transformer uses a fully connected layer in the feed-forward layer,
which neglects the temporal relationships between tokens and cannot achieve alignment
between images. Inspired by BasicVSR [49], we propose a feed-forward layer based on
bidirectional optical flow to model the local correlation of the diffusion time of pollutants,
which ensures spatial alignment of the diffusion motion of PM2.5 pollutants, as shown in
Figure 9.

←−
O t = {

s(V1, V1), if t = 1,
s(V t−1, V t), if t ∈ (1, T]

(5)

−→
O t =

{
s(V t+1, V t), if t ∈ [1, T)
s(V T , V T), if t = T

(6)

←−X = ω(X ,
←−O ),
−→X = ω(X ,

−→O ) (7)

where s represents our bidirectional optical flow estimation algorithm [50], Vi represents the
atmospheric pollution distribution at frame i in the current time window, and w represents
the wrapping function.

Figure 9. Optical flow estimation of the pollutant distribution at adjacent time points.

Then, we use convolutional pyramids to estimate the optical flow between frames−→
O and

←−
O . The output X from the spatiotemporal convolutional self-attention layer is

aggregated using the wrapping method to obtain
−→X and

←−X forward propagation features
and backward propagation features from the optical flow information and data.

foutput(X ) = ϕ( fattention(X ) + ρ(ResidualConv(V ,
←−X )

+ ResidualConv(V ,
−→X )))

(8)

Furthermore, as shown in Figure 10, in order to learn the relationship between frames,
we improve the fully connected feed forward layer by improving it to convolutional for-
ward and backward propagation, where ρ(−) is the fusion operation. By the bidirectional
propagation of the optical flow, thus being able to learn the temporal correlation contami-
nant diffusion between time intervals.
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Figure 10. The optical flow map is combined with the feature map Fattention from the attention
mechanism. Furthermore, a two-way propagation network then generates separate feature maps,
which are fused into Foptical .

5.4. Feature Reconstruction

After obtaining the features for optical flow fusion, we use the residual block to extract
the fused features Foptical as shown in Figure 11. For the input contamination distribution
feature tensor, we apply a convolutional layer to process it. The convolutional layer includes
64 input channels and 64 output channels with a convolutional kernel size of 3 × 3, a step
size of 1, and a padding of 1. Subsequently, we use a LeakyReLU activation function to
retain the extracted feature information. Next, we perform multiple upsampling operations
to convert the features from coarse-grained to fine-grained level. Each upsampling section
consists of the following steps: (1) using a convolutional layer with 64 input channels,
256 output channels, a convolutional kernel size of 3 × 3, a step size of 1, and a padding of
1; (2) performing a Pixel-Shuffle operation on the outputs of the above convolutional layer
to increase the spatial dimensions while decreasing the channel dimensions in order to
achieve the effect of upsampling; and (3) the output of the above operation the Leaky-ReLU
activation function is again applied to ensure the continuity and expressiveness of the
features. Repeating the upsampling operation three times helps to gradually transform
the low-resolution contamination distribution features into high-resolution features while
retaining important information about the details. Furthermore, the final loss function is
shown in Equation (9).

L f inal =
1
T

T

∑
t=1

∥∥∥X̂F
t (θ)− XF

t

∥∥∥2
(9)

Figure 11. The feature maps obtained from the optical flow were residualized and upsampled to
obtain fine-grained spatial and temporal distributions of the feature contamination.

6. Experiments and Results
6.1. Experiment Settings

Our study area covers different geographical features of the Yangtze River Delta
region. We obtained data from 1 January 2013 to 31 December 2021 from the seamless
spatial distribution dataset of PM2.5 in the Yangtze River Delta region, which was provided
by several sources, including [36,37]. The details of the dataset are shown in Table 1.
Furthermore, we divide these data into a training set, validation set, and test set in 2:1:1
for better analysis and modeling. With these data, we can study the air quality trends
in the Yangtze River Delta region and provide an important reference for improving the
environmental quality and living conditions in the region.
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Our model was deployed in pytorch1.10.2 and CUDA11.3 on RTX3090. Our model
used the ADAM optimizer with parameters set to 0.9 and 0.99. Furthermore, the learning
rate was set to 2 × 10−4. The number of transformer modules was 1, the number of feature
extraction blocks was 5, the number of feature reconstruction blocks was 30, and the length
of the input time window was 5, the number of transformer modules was 1, the number of
feature extraction blocks was 5, and the number of feature reconstruction blocks was 30.
Batch_size = 2, and its base_channels were 32, the sliding window was 5 × 10 × 10, and
the number of M was set to 3. For a fair comparison, our model experiments are compared
in the next five time points.

6.2. Baselines

MEAN: We distributed the pollutant data directly and uniformly to the fine granularity
without feature extraction.

HA: Similar to the above method, but we added the time dimension so that it was
averaged both spatially and temporally.

Urban-FM [51]: The authors utilized a feature extraction module and a new up-
sampling module for distribution to generate fine-grained flow distributions from coarse-
grained inputs and utilize a generic fusion sub-network to further improve performance by
taking into account the effects of different external factors. The performance was good on
traffic flow and pedestrian flow datasets.

EDVR [52]: EDVR proposes solutions to two common difficulties in the video overde-
termination problem: content alignment and feature fusion. For the alignment problem,
a pyramidal cascaded deformable convolutional alignment network (PCD) was proposed,
based on a deformable convolutional DCN, whose multi-level cascade setting produced a
structure from rough to accurate estimation. For the feature fusion problem, the spatiotem-
poral attention fusion SR network (TSA) was proposed, which was based on an attention
mechanism that focuses on important information and ignores useless or erroneous infor-
mation by assigning different weights to the information contained in different frames and
different spatial structures due to their different importance to image reconstruction.

basicVSR [49]: By designing a bidirectional loop structure of propagation, feature-wise
alignment based on optical flow, and using some existing fusion and upsampling methods,
the authors came up with a simple and lightweight video super segmentation method that
outperforms existing VSR structures in terms of speed and reconstruction performance.

IconVSR [49]: Based on basicVSR, the authors proposed a module containing two
new extensions to improve aggregation and propagation components. The first module
is called information-fill, a mechanism that uses an additional module to extract features
from sparsely selected frames (key frames) and then inserts these features into the main
network for feature refinement. The second extension is a coupled propagation scheme that
facilitates the exchange of information in the forward and backward propagation branches.
These two modules not only reduce the accumulation of errors due to occlusions and
image boundaries during propagation, but also allow the propagation to access complete
information in a sequence for generating high-quality features.

basicVSR++ [53]: The authors improved the Propagation and Alignment sections
based on the BasicVSR above. Specifically, Grid-Propagation was used in the feature
propagation (Propagation) to repeatedly correct the alignment accuracy, and in the align-
ment (Alignment) section, a cross-grid propagation mechanism with second-orderMarkov
property and a deformable convolutional alignment module with optical flow guidance
were proposed.

MANA [54]: The model was designed with a cross-frame non-localattention mecha-
nism that allows VSR to be more robust to large movements in the video without frame
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alignment. To obtain information beyond adjacent frames, a new memory-augmented
attention module was additionally designed to memorize general video details during the
training of SR.

6.3. Evaluation Metrics

To fully evaluate the performance of our proposed network, we used Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE) to measure the prediction performance.

RMSE =

√√√√ 1
N

N

∑
i=1

(Xi − X̂i)2 (10)

MAE =
1
N

N

∑
i=1

∣∣Xi − X̂i
∣∣ (11)

MAPE =
1
N

N

∑
i=1

∣∣∣∣Xi − X̂i
Xi

∣∣∣∣ (12)

6.4. Results Analysis

We first evaluated our own model against the baseline on different scaled training
datasets. The comparison is shown in Table 2. Note here that we omitted the variance in
the table because the standard deviations of our test results are in [0, 5%].

Table 2 shows the RMSE of the validation set when trained with a 100% partitioned
dataset. When compared with other baselines, the AirSTFM converged faster and smoother,
and the loss values were kept low in the early stage, which indicates that our pretext task
successfully extracted the pollutant dispersion features and fused them with the model.

Table 2. Testing data performance with different training proportions.

100% 80% 40%

Methods RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Mean 24.710 16.227 1.025 24.710 16.227 1.025 24.710 16.227 1.025

HA 5.039 1.942 0.534 6.760 2.049 0.592 6.479 1.999 0.546

Urban-FM [51] 4.808 2.021 0.573 5.970 3.536 0.237 9.520 5.877 0.438

EDVR [52] 1.386 0.737 0.061 1.403 0.741 0.064 1.991 1.032 0.126

basicVSR [49] 1.281 0.638 0.055 1.306 0.631 0.047 1.331 0.667 0.069

IconVSR [49] 1.204 0.602 0.039 1.245 0.616 0.051 1.313 0.651 0.070

basicVSR++[53] 1.235 0.621 0.055 1.226 0.597 0.046 1.298 0.645 0.059

MANA [54] 1.711 1.191 0.111 1.896 1.599 0.184 4.589 1.885 0.428

AirSTFM 1.173 0.584 0.036 1.200 0.585 0.044 1.248 0.621 0.052
∆ +2.60% +3.05% +6.36% +2.17% +2.06% +5.01% +3.86% +3.76% +12.18%

Furthermore, we divided the training set by 100%, 80%, and 40% to evaluate the effect
of our model on datasets of different sizes in Table 2 and Figure 12. It can be seen that our
model outperformed the other methods in all these divisions. In the 100% division, our
model outperformed the second best model in RMSE, MAE, and MAPE by 2.6%, 3.05%,
and 6.36%, and in the 40% division, our model also outperformed the second best model in
RMSE, MAE, and MAPE by 3.86%, 3.76%, and 12.18%, which demonstrates the applicability
of our model with different data sizes.

It is shown by the above results that our model achieved a very large advantage at
different data scales. This is exactly in line with our motivation that our model makes better
use of the air pollution dispersion characteristics compared to other models in the FAPI
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problem. In the Figure 13, to better compare the models, we picked the PM2.5 distribution
on a certain day in January of a certain year, where we can see that the PM2.5 pollution
was serious in the north due to winter heating and other reasons, while there were many
heavy chemical enterprises distributed in the middle reaches of the Yangtze River basin
and the regional pollutant distribution was all more serious. In the Mean method, the effect
was poor, which shows the importance of capturing the spatial and temporal dispersion
characteristics of air pollution. In the comparison with Urban-FM, our model outperformed
it in terms of effect. As we can see in Figure 13, although Urban-FM and HA’s inferred
loss values are similar, they present very different effects: HA is seriously missing in
details, while Urban-FM restores the details in place, but the effect on the boundary is
poor. This is because Urban-FM mainly deals with a fine-grained urban flow inference
(FUFI) problem, which has special structural constraints and is more suitable for traffic
flow and pedestrian flow problems, which is not compatible with atmospheric pollutant
dispersion characteristics. Most of the other state-of-the-art models tend to focus on the
video overdetermination problem, which uses a very large correlation between frames in
the dataset, often resulting in the problem of feature redundancy, while in the FAPI problem,
the time interval is 1 day, and the temporal features are difficult to extract, resulting in the
video overdetermination model being relatively unsuitable in the FAPI problem.

(a) Results on RMSE (b) Results on MAE (c) Results on MAPE

Figure 12. Results compared to baseline methods for different training set sizes.

Figure 13. Visualization of the comparison of our method with each baseline method for the inferred
PM2.5 distribution, where GT stands for the ground truth.
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Figure 14 shows the comparison of the number of parameters and the loss in the
100% division of the dataset between our model and some video hyperdivision models.
The table shows the comparison between the AirSTFM and baseline methods in terms of
training time, and in comparison with IconVSR, it achieved the second highest inference
result, but the training time was twice as long as ours. However, since the MANA model
focuses on solving large motion models and does not use an alignment mechanism, it is
less effective on the FAPI problem.

Figure 14. Model parameters’ comparison.

Furthermore, Figure 15 and Table 3 shows the convergence speed comparison of
different models, where the RMSE of the validation set was trained with a 100% partitioned
dataset. When compared with other baselines, the AirSTFM converged faster and smoother,
and the loss values were kept low in the early stage, which indicates that our pretext task
successfully extracted the pollutant dispersion features and fused them with the model.

Figure 15. Convergence speed comparison of different models.

Table 3. Model parameters and training time comparison.

Models Params (M) Training Time RMSE MAE MAPE

Urban FM 6.42 12 h 52 min 4.808 2.021 0.573

EDVR 3.03 10 h 41 min 1.386 0.737 0.061

basicVSR 4.22 30 h 6 min 1.281 0.638 0.055

IconVSR 6.2 43 h 21 min 1.204 0.602 0.039

basicVSR++ 7.47 35 h 50 min 1.235 0.621 0.055

MANA 82.03 8 h 50 min 1.711 1.191 0.111

AirSTFM 4.64 20 h 6 min 1.173 0.584 0.036

Figure 16 shows the difference between the speculative and real values, where the
higher brightness represents a larger error. It can be seen that most of them are distributed
in the middle and lower reaches of the Yangtze River as well as coastal areas. This is due
to the fact that the cities of An’qing and Tongling in the middle and lower reaches of the
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Yangtze River, as heavy industrial cities, produce more serious pollution and rapid changes
in air pollutant emissions, which makes the extrapolation more difficult and thus leads to
larger errors.

Figure 16. Visualization of the difference between inferred and actual values.

6.5. Ablation Experiments

In order to analyze the contribution of each module of our model, we tested the
modules individually and in two-by-two combinations, under a 100% training set. It
should be noted here that attention unchecked represents the replacement of our 3D-patch-
wise convolutional self-attention with the attention mechanism of the original transformer,
and optical flow unchecked represents the replacement of the optical flow module with the
fully connected layer of the original transformer.

From Table 4, we can find that any combination of two or more modules works
better than one module alone, and the combination of three works best. This proves the
effectiveness of our component combination. When using separate modules, it can be seen
that the attention mechanism works best, and when using a two-by-two combination of
modules, it is seen that the module containing the attention module outperforms the module
without the attention module. When using the optical flow module alone, the experiments
are less effective; this is because when using the optical flow model alone, the estimated
optical flow is wrappedwith the original feature maps extracted from the attention module
and not fused with the features containing spatiotemporal variation, which is less effective.
When combined with the 3D patch attention module, the effect improves significantly.

Table 4. Ablation studies.

3D-Patch-Wise
Self-Attention Module

Bidirectional Optical
Feed-Forward Layer

Spatial–Temporal
Inference Network RMSE MAE MAPE

√
1.316 0.642 0.048

√
1.387 0.768 0.062

√
1.369 0.802 0.060

√ √
1.213 0.596 0.044

√ √
1.209 0.599 0.042

√ √
1.230 0.609 0.040

√ √ √
1.173 0.584 0.036

Table 5 shows a comparison of the fusion of the features extracted by the pretext task
using different methods at different locations in the network structure (“before” represents
the position after placing feature fusion in the feature extraction module and before po-
sition encoding, “after” represents the position after placing feature fusion in the feature
reconstruction and before upsampling), with the best results using the add method and
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before the network structure. This is because the goal of our pretext task is to infer the
spatiotemporal distribution of pollution from a more coarse-grained pollution distribution
of 1 × 50 × 45 to 7 × 100 × 90 to infer the pollutant-specific spatiotemporal dispersion
characteristics from the regional level, which requires early fusion of the features and fusion
with the features at a high level.

Table 5. Different fusion strategies effects.

RMSE MAE MAPE

AirSTFM (concat fusion “after”) 1.248 0.625 0.056

AirSTFM (concat fusion “before”) 1.221 0.61 0.05

AirSTFM (add fusion “after”) 1.225 0.602 0.046

AirSTFM (add fusion “before”) 1.173 0.584 0.036

6.6. Hyperparameters Analysis

In this section, we analyze some hyperparameters of the model, and each time we
change a hyperparameter, we set the other parameters to their default values. The hyperpa-
rameter experiment results are shown in Tables 6–9.

Table 6. Different number of feature extract blocks.

Extract Blocks Number RMSE MAE MAPE

3 1.321 0.879 0.054

5 1.173 0.584 0.036

10 1.294 0.868 0.043

Table 7. Different number of feature reconstruct blocks.

Reconstruct Blocks Number RMSE MAE MAPE

10 1.267 0.712 0.046

30 1.173 0.584 0.036

50 1.328 0.887 0.052

Table 8. Different number of sequence lengths.

Sequence Length RMSE MAE MAPE

3 1.298 0.859 0.044

5 1.173 0.584 0.036

7 1.297 0.861 0.043

Table 9. Different number of channels.

Channels RMSE MAE MAPE

16 1.626 0.960 0.085

32 1.173 0.584 0.036

64 1.255 0.846 0.036

In Tables 6 and 7, we analyze the number of feature extraction and feature reconstruc-
tion, and we can observe from the table that the fine-grained inference works best when
the number of extraction blocks is 5 and the number of reconstruction blocks is 30.

Furthermore, in Table 8, we can find that the performance increases when we change
the sequence length from 3 to 5, but decreases when it is further increased to 7. It is possible
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that the excessive sequence length contains too much redundant time information, which
introduces additional noise to the inference. From Table 9, we see that the best results are
obtained when the number of channels = 32. When the number of channels was 64, the
results became worse, which was due to the fact that increasing the number of channels
may lead to over-fitting.

In order to analyze the different overlap rate effect in Figure 6, from Table 10 we can
find that the higher the overlap rate between two adjacent chunks, the better the prediction
performance. The overlap rate parameter is set to 90% in this work, which achieved the
beat prediction performance.

Table 10. Different overlap rate effects.

Overlap Rate RMSE MAE MAPE

90% 1.173 0.584 0.036

70% 1.207 0.591 0.041

50% 1.219 0.594 0.043

0 1.216 0.596 0.041

7. Conclusions
In this paper, we propose a 3D spatiotemporal attention super-resolution model

(AirSTFM) for fine-grained air pollution inference at a large-scale region level. Different
from the existing macro-regional level or ground-level methods which make air pollution
inference in the same spatial scale, our AirSTFM employs a 3D-patch-wise self-attention
convolutional module to extract the spatiotemporal features of coarse-grained air pol-
lution. Moreover, a bidirectional optical flow feed-forward layer is designed to extract
the short-term air pollution diffusion characteristics, which can learn the temporal cor-
relation contaminant diffusion between closeness time intervals. Finally, we construct a
spatiotemporal super-resolution upsampling pretext task to model the higher-level dis-
persion features mapping between the coarse-grained and fined-grained air pollution
distribution. The proposed AirSTFM model is evaluated on the PM2.5 pollution dataset of
the Yangtze River Delta region, our model outperforms the second best model in RMSE,
MAE, and MAPE by 2.6%, 3.05%, and 6.36% in the 100% division, and our model also out-
performs the second best model in RMSE, MAE, and MAPE by 3.86%, 3.76%, and 12.18% in
the 40% division, which demonstrates the applicability of our model at different data sizes.
Furthermore, the comprehensive experiment results show that our proposed AirSTFM
outperforms the state-of-the-art models.

In the future, we will extend our proposed model to address missing patterns in
spatiotemporal air pollution data by introducing diffusion models framework. Moreover,
we will apply the proposed model to other areas of smart city regulation, such as urban
greenhouse gases prediction, urban precipitation forecasting, etc.
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